One characterization of functionalism that is probably vague enough to be acceptable to most functionalists is: each type of mental state is a state consisting of a disposition to act in certain ways and to have certain mental states, given certain sensory inputs and certain mental states. ... Functionalists want to individuate mental states causally, and since mental states have mental causes and effects as well as sensory causes and behavioral effects, functionalists individuate mental states partly in terms of causal relations to other mental states. ...

Shoemaker ... says, "On one construal of it, functionalism in the philosophy of mind is the doctrine that mental, or psychological, terms are, in principle, eliminable in a certain way." ... [Therefore, functionalism shares something in common with physicalism, since] by ‘physicalism,’ I mean the doctrine that pain, for example, is identical to a physical (or physiological) state.

[But], as many philosophers have argued, if functionalism is true, physicalism is probably false. The point is at its clearest with regard to Turing-machine versions of functionalism. Any given abstract Turing machine can be realized by a wide variety of physical devices. ... Therefore, if pain is a functional state, it cannot, for example, be a brain state, because creatures without brains can realize the same Turing machine as creatures with brains.

I must emphasize that the functionalist argument against physicalism does not appeal merely to the fact that one abstract Turing machine can be realized by systems of different material composition (wood, metal, glass, etc.). ... Rather, the functionalist argument against physicalism is that it is difficult to see how there could be [any sort of] physical property in common to all and only the possible physical realizations of a given Turing-machine state. Try to think of a remotely plausible candidate! At the very least, the onus is on those who think such physical properties are conceivable to show us how to conceive of one.

One way of expressing this point is that, according to functionalism, physicalism is a chauvinist theory: it withholds mental properties from systems that in fact have them. In saying mental states are brain states, for example, physicalists unfairly exclude those poor brainless creatures who nonetheless have minds. ...
I shall [now] describe a class of devices that are prima facie embarrassments for all versions of functionalism in that they indicate functionalism is guilty of liberalism - classifying systems that lack mentality as having mentality.

Consider the simple version of machine functionalism already described. ... As already mentioned, every version of functionalism assumes some specification of inputs and outputs. A functionalist specification would do as well for the purposes of what follows:

- **The G-Men**: Imagine a body externally like a human body, say yours, but internally quite different. The neurons from sensory organs are connected to a bank of lights in a hallow cavity in the head. A set of buttons connects to the motor-output neurons. Inside the cavity resides a group of little men. Each has a very simple task: to implement a "square" of an adequate machine table that describes you. On one wall is a bulletin board on which is posted a state card, i.e., a card that bears a symbol designating one of the states specified in the machine table. Here is what the little men do: Suppose the posted card has a 'G' on it. This alerts the little men who implement G squares – 'G-men' they call themselves. Suppose the light representing input 'I' goes on. One of the G-men has the following as his sole task: when the card reads 'G' and the 'I' light goes on, he presses output button O,9, and changes the state card to 'M'. This G-man is called upon to exercise his task only rarely. In spite of the low level of intelligence required of each little man, the system as a whole manages to simulate you because the functional organization they have been trained to realize is yours. A Turing machine can be represented as a finite set of quadruples (or quintuples, if the output is divided into two parts): current state, current input; next state, next output. Each little man has the task corresponding to a single quadruple. Through the efforts of the little men, the system realizes the same (reasonably adequate) machine table as you do and is thus functionally equivalent to you.

I shall describe a version of the homunculi-headed simulation, which has more chance of being nomologically possible. How many homunculi are required? Perhaps a billion are enough:

- **The China Brain**: Suppose we convert the government of China to functionalism, and we convince its officials to realize a human mind for an hour. We provide each of the billion people in China (I chose China because it has a billion inhabitants) with a specially designed two-way radio that connects them in the
appropriate way to other persons and to the artificial body mentioned in the previous example. We replace each of the little men with a citizen of China plus his radio. Instead of a bulletin board we arrange to have letters displayed on a series of satellites placed so that they can be seen from anywhere in China.

The system of a billion people communicating with one another plus satellites plays the role of an external "brain" connected to the artificial body by radio. There is nothing absurd about a person being connected to his brain by radio. Perhaps the day will come when our brains will be periodically removed for cleaning and repairs. Imagine that this is done initially by treating neurons attaching the brain to the body with a chemical that allows them to stretch like rubber bands, thereby assuring that no brain-body connections are disrupted. Soon clever businessmen discover that they can attract more customers by replacing the stretched neurons with radio links so that brains can be cleaned without inconveniencing the customer by immobilizing his body.

It is not at all obvious that the China-body system is physically impossible. It could be functionally equivalent to you for a short time, say an hour.

"But," you may object, "how could something be functionally equivalent to me for an hour? Doesn't my functional organization determine say, how I would react to doing nothing for a week but reading the Reader's Digest? Remember that a machine table specifies a set of conditionals of the form: if the machine is in S; and receives input I, it emits output Ot and goes into S. These conditionals are to be understood subjunctively. What gives a system a functional organization at a time is not just what it does at that time, but also the counterfactuals true of it at that time: what it would have done (and what its state transitions would have been) had it had a different input or been in a different state. If it is true of a system at time t that it would obey a given machine table no matter which of the states it is in and no matter which of the inputs it receives, then the system is described at t by the machine table (and realizes at t the abstract automaton specified by the table), even if it exists for only an instant. For the hour the Chinese system is "on," it does have a set of inputs, outputs, and states of which such subjunctive conditionals are true. This is what makes any computer realize the abstract automaton that it realizes.

Of course, there are signals the system would respond to that you would not respond to e.g., massive radio interference or a flood of the Yangtze River. Such events might cause a malfunction, scotching the
simulation, just as a bomb in a computer can make it fail to realize the machine table it was built to realize. But just as the computer without the bomb can realize the machine table, the system consisting of the people and artificial body can realize the machine table so long as there are no catastrophic interferences, e.g., floods, etc.

"But," someone may object, "there is a difference between a bomb in a computer and a bomb in the Chinese system, for in the case of the latter (unlike the former), inputs as specified in the machine table can be the cause of the malfunction. Unusual neural activity in the sense organs of residents of Chungking Province caused by a bomb or by a flood of the Yangtze can cause the system to go haywire."

Reply: The person who says what system he or she is talking about gets to say what signals count as inputs and outputs. I count as inputs and outputs only neural activity in the artificial body connected by radio to the people of China. Neural signals in the people of Chungking count no more as inputs to this system than input tape jammed by a saboteur between the relay contacts in the innards of a computer count as an input to the computer.

Of course, the object consisting of the people of China + the artificial body has other Turing-machine descriptions under which neural signals in the inhabitants of Chungking would count as inputs. Such a new system (i.e., the object under such a new Turing-machine description) would not be functionally equivalent to you. Likewise, any commercial computer can be redescribed in a way that allows tape jammed into its innards to count as inputs. In describing an object as a Turing machine, one draws a line between the inside and the outside. (If we count only neural impulses as inputs and outputs, we draw that line inside the body; if we count only peripheral stimulations as inputs, we draw that line at the skin.) In describing the Chinese system as a Turing machine, I have drawn the line in such a way that it satisfies a certain type of functional description—one that you also satisfy, and one that, according to functionalism, justifies attributions of mentality. Functionalism does not claim that every mental system has a machine table of a sort that justifies attributions of mentality with respect to every specification of inputs and outputs, but rather, only with respect to some specification.

Objection: The Chinese system would work too slowly. The kind of events and processes with which we normally have contact would pass by far too quickly for the system to detect them. Thus, we would be unable to converse with it, play bridge with it, etc.
Reply: It is hard to see why the system’s time scale should matter. Is it really contradictory or nonsensical to suppose we could meet a race of intelligent beings with whom we could communicate only by devices such as time-lapse photography? When we observe these creatures, they seem almost inanimate. But when we view the time-lapse movies, we see them conversing with one another. Indeed, we find they are saying that the only way they can make any sense of us is by viewing movies greatly slowed down. To take time scale as at all important seems crudely behavioristic.

What makes the homunculi-headed system (count the two systems as variants of a single system) just described a prima facie counterexample to (machine) functionalism is that there is prima facie doubt whether it has any mental states at all—especially whether it has what philosophers have variously called "qualitative states," "raw feels," or "immediate phenomenological qualities." (You ask: What is it that philosophers have called qualitative states? I answer, only half in jest: As Louis Armstrong said when asked what jazz is, "If you got to ask, you ain't never gonna get to know.") In Nagel’s terms (1974), there is a prima facie doubt whether there is anything which it is like to be the homunculi-headed system.

The force of the prima facie counterexample can be made clearer as follows: Machine functionalism says that each mental state is identical to a machine-table state. For example, a particular qualitative state, Q, is identical to a machine-table state, Sa. But if there is nothing it is like to be the homunculi-headed system, it cannot be in Q even when it is in Sa. Thus, if there is prima facie doubt about the homunculi-headed system’s mentality, there is prima facie doubt that Q = Sa, i.e., doubt that the kind of functionalism under consideration is true. Call this argument the Absent Qualia Argument. …

The Absent Qualia Argument rested on an appeal to the intuition that the homunculi-headed simulations lacked mentality, or at least qualia. I said that this intuition gave rise to prima facie doubt that functionalism is true. … Appeal to intuitions when judging possession of mentality, however, is especially suspicious. No physical mechanism seems very intuitively plausible as a seat of qualia, least of all a brain. Is a hunk of quivering gray stuff more intuitively appropriate as a seat of qualia than a covey of little men? If not, perhaps there is a prima facie doubt about the qualia of brain-headed systems too?

However, there is a very important difference between brain-headed and homunculi-headed systems. Since we know that we are brain-headed systems, and that we have qualia, we know that brain-headed systems can have qualia. So even though we have no theory of qualia
which explains how this is possible, we have overwhelming reason to
disregard whatever prima facie doubt there is about the qualia of brain-
headed systems. Of course, this makes my argument partly empirical -
it depends on knowledge of what makes us tick. But since this is
knowledge we in fact possess, dependence on this knowledge should
not be regarded as a defect.

There is another difference between us meatheads and the homunculi-
heads: they are systems designed to mimic us, but we are not
designed to mimic anything (here I rely on another empirical fact). This
fact forestalls any attempt to argue on the basis of an inference to the
best explanation for the qualia of homunculi-heads. The best
explanation of the homunculi-heads screams and winces is not their
pains, but that they were designed to mimic our screams and winces.

Some people seem to feel that the complex and subtle behavior of the
homunculi-heads (behavior just as complex and subtle—even as
"sensitive" to features of the environment, human and nonhuman, as
your behavior) is itself sufficient reason to disregard the prima facie
doubt that homunculi–heads have qualia. But this is just crude
behaviorism.

My case against Functionalism depends on the following principle: if a
doctrine has an absurd conclusion which there is no independent
reason to believe, and if there is no way of explaining away the
absurdity or showing it to be misleading or irrelevant, and if there is no
good reason to believe the doctrine that leads to the absurdity in the
first place, then don't accept the doctrine. I claim that there is no
independent reason to believe in the mentality of the homunculi-head,
and I know of no way of explaining away the absurdity of the
conclusion that it has mentality (though of course, my argument is
vulnerable to the introduction of such an explanation). …

Here is a summary of the argument so far: Functionalism has the
bizarre consequence that a homunculi-headed simulation of you has
qualia. This puts the burden of proof on the Functionalist to give us
some reason for believing his doctrine. However the one argument for
Functionalism in the literature is no good, and so Functionalism shows
no sign of meeting the burden of proof. … The functionalist says to the
physicalist: "It is very hard to see how there could be a single physical
characterization of the internal states of all and only creatures with
mentality." I say to the functionalist: "It is very hard to see how there
could be a single physical characterization of the inputs and outputs of
all and only creatures with mentality." In both cases, enough has been
said to make it the responsibility of those who think there could be
such characterizations to sketch how they could be possible.